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Abstract. This study explores whether climate models with higher spatial resolution provide higher accuracy for 14 

precipitation simulations and/or different climate change signals. The outputs from two convection-permitting 15 

climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse 16 

scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. The 17 

high-resolution ALARO and CCLM models reveal an added value to capture sub-daily precipitation extremes 18 

during summer compared to the driving GCMs and reanalysis data. Further validation of historical climate 19 

simulations based on design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows a 20 

better match of the convection-permitting model results with the observations-based IDF statistics. Results moreover 21 

indicate that one has to be careful in assuming spatial scale independency of climate change signals for the delta 22 

change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These 23 

larger changes appear to be dependent on the climate model, since such intensification is not observed for the 24 

ALARO model. 25 

1 Introduction 26 

It becomes evident that climate change will increase the frequency and intensity of extreme events (IPCC, 2007, 27 

2013). Therefore, the impacts of climate change on hydrological extremes such as heavy precipitation events have to 28 

be considered when designing and optimizing water infrastructures. The future projection of climate change impact 29 

on precipitation usually relies on the simulation results of General Circulation Models (GCMs). However, these 30 

results need to be validated against historical precipitation observations prior to any use for local impact studies of 31 

climate change. When GCM results are validated based on observations, sometimes large biases are observed 32 

especially for extreme precipitation values (van Pelt et al., 2012; van Haren et al., 2013; Tabari et al., 2015), 33 

imposing an uncertainty to the GCM projections for the future. The biases in the coarse-resolution GCMs come 34 
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from the fact that they disregard some governing features of precipitation at local scale, next to the scale differences 1 

when comparing GCM results with local observations (Maraun et al., 2010; Willems et al., 2012). Some previous 2 

studies that attempted to assess GCM skill as a function of resolution showed that the performance of GCMs is 3 

independent of their resolution (Johnson et al., 2011; Masson and Knutti, 2011). However, given that deep 4 

convective phenomena are sufficiently resolved only at spatial resolutions down to less than about 4 km, such 5 

dynamical downscaling is expected to be one of the solutions for decreasing the systematic biases and narrowing the 6 

gap between GCM outputs and needs for fine-scale precipitation in hydrological and water engineering studies. 7 

One of the methods to dynamically downscale GCM outputs is to drive a Regional Climate Model (RCM) using 8 

GCM as initial and boundary conditions. RCMs usually provide an improved description of surface features 9 

(topographical, land cover, etc.) and more complex description of atmospheric processes compared to GCMs. This 10 

often results in more realistic representation of precipitation variability and of climate feedback mechanisms (IPCC, 11 

2001; Mearns et al., 2004; Christensen and Christensen, 2007; Mayer et al., 2015). Whatever climate models are 12 

used, verification of their results under the current climate is needed, because some high-resolution RCMs fail to 13 

adequately describe local-scale surface processes (especially in inhomogeneous regions with complex topography) 14 

due to the convective parameterization scheme or the characteristics of the GCM they are nested in (Hohenegger et 15 

al., 2008; Willems et al., 2012). 16 

High-resolution (convection-permitting resolutions) climate models are of great added value to simulate large 17 

convective storms and mesoscale organization (Kendon et al., 2014; Prein et al., 2015). At these resolutions, deep 18 

convection is partly resolved and does not need to rely entirely on parameterizations. The representation of the daily 19 

cycle in precipitation, extreme events and spatial variability strongly improves for convection-permitting models 20 

(Kendon et al., 2012; Prein et al., 2013a, 2013b, 2015; Brisson et al., 2015; Ban et al., 2014, 2015, Fosser et al., 21 

2015). However, their simulation for long time scales is restricted due to high computational costs. They are 22 

consequently mainly applied for numerical weather prediction (Done et al., 2004; Baldauf et al., 2011; Tang et al., 23 

2013). First simulations for decadal time periods using convection-permitting models point to a stronger increase in 24 

extremes compared to coarser resolution integration, but the number of climate change impact studies with these 25 

models is limited so far (Hohenegger et al., 2008; Kendon et al., 2012, 2014; Prein et al., 2015). 26 

The use of regional climate models for local impact studies of climate change on precipitation (totals or 27 

extremes) has been increased in recent years (e.g. Willems and Vrac, 2011; Olsson et al., 2012; Mearns et al., 2013; 28 

Rajczak et al., 2013). Nevertheless, in some studies, climate scenarios have been based on a broad set of coarse-29 

resolution GCM results (Deng et al., 2013; Rana et al., 2014; Sun et al., 2015). Now, the question is whether high-30 

resolution climate models truly improve extreme precipitation simulations, and if so, to what extent. This study 31 

intends to answer this research question by comparing high-resolution models (RCMs with resolutions between 40 32 

and 3 km) with their driving GCM or reanalysis data for simulating sub-daily and daily precipitation quantiles. 33 

Further comparisons are performed for simulating design precipitation statistics derived from intensity–duration–34 

frequency (IDF) curves. 35 

Second research question considered, in case the high resolution climate models show improved extreme 36 

precipitation results, is whether this improvement in absolute precipitation values also significantly changes the 37 
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relative climate change signal. Hydrological applications of climate change impact analysis often assume that the 1 

change factors, defined as the relative change from historical to future climate conditions, can be obtained from 2 

GCM or RCM simulations and applied for impact analysis at finer spatial scales. This is the case for any delta 3 

change or perturbation based statistical downscaling method (e.g. Ntegeka et al., 2014; Sunyer et al., 2015). In this 4 

study, the validity of this hypothesis is investigated by comparing the climate change signals on IDF statistics 5 

between the high and coarse scale resolution models. Central Belgium is considered as the study location. 6 

2 Climate models 7 

2.1 ALARO model 8 

The ALARO-0 model is a high-resolution regional climate model developed by the Royal Meteorological Institute 9 

(RMI) of Belgium based on the numerical weather prediction model called Aire Limitee Adaptation Dynamique 10 

Developpement International (ALADIN). Hereafter, ALARO is used as shorthand name for the ALARO-0 model 11 

described in De Troch et al. (2013). The ALADIN model is the limited area model (LAM) version of the Action de 12 

Recherche Petite Echelle Grande Echelle Integrated Forecast System (ARPEGE-IFS). The physics parameterization 13 

package of the ALARO model was designed specifically for running at resolutions between 3 and 8 km. The 14 

specific characteristics of the Modular Multiscale Microphysics and Transport (3MT) convection scheme used in the 15 

ALARO model lead to a good multiscale performance, particularly in convection-permitting resolutions (De Troch 16 

et al., 2013). The ALARO simulations for the present climate conditions over Belgium were performed for the 17 

periods 1961-1990 and 1981-2010 at resolutions ranging from 40 km down to 4 km, both using a set of simulations 18 

forced with ERA-40 or ERA-Interim reanalysis as well as with the CNRM-CM3 GCM for the historical control run 19 

(Table 1). For the future climate projections (2071–2100), the CNRM-CM3 GCM under the A1B scenario was used 20 

to force the ALARO model (Hamdi et al., 2014). 21 

2.2 CCLM model 22 

The other high-resolution climate model used in this study is the COSMO-CLM (CCLM) model. The CCLM is a 23 

non-hydrostatic limited area climate model developed by the climate limited-area modeling (CLM) community. The 24 

CCLM model is based on the COSMO model (Steppeler et al., 2003), designed by the Deutsche Wetterdienst 25 

(DWD) for operational weather prediction. In order to perform climate simulations with the COSMO model, the 26 

CLM community provided extensions such as dynamic surface boundaries, a more complex soil model and the 27 

possibility to use various CO2 concentration values (Böhm et al., 2006; Rockel et al., 2008). 28 

The model settings are based on a previous study by Brisson et al. (2015), which provide recommendations for 29 

performing climate simulations at convection permitting scale. The one-moment microphysical parameterization 30 

includes a representation of graupel hydrometeors. In addition, the domain size of this simulation (192x175 31 

gridpoints) is large enough to ensure that the analysis is not affected by the spatial spin-up described in Brisson et al. 32 

(2015). A three-step nesting strategy was applied with the driving data, either from ERA-Interim reanalysis data or 33 

the EC-EARTH GCM, forcing a CCLM at 25 km grid mesh size, which in turn forces a CCLM at 7 km grid mesh 34 
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size, and next at the final 2.8 km grid mesh size. Model simulations were performed for the period 2001-2010, and a 1 

thorough evaluation of decadal statistics of precipitation, temperature and cloud characteristics was recently 2 

performed (Brisson et al., 2016). The CCLM driven by EC-EARTH was performed for the period 2000-2010 and 3 

2060-2069 using the RCP4.5 emission scenario (Table 1). Hereafter, the driving GCM or reanalysis dataset is shown 4 

as subscript to the name of the RCM. As the control run of the EC-EARTH GCM ends in 2009, its data for the 5 

period 2000-2009 were used for comparing with the driven CCLM simulations. 6 

3 Methodology 7 

In this study, simulations of sub-daily and daily precipitation quantiles from the climate models are analyzed. For 8 

the future climate analysis, the climate change signals are obtained as relative changes of precipitation intensities 9 

calculated as the ratios of precipitation quantiles derived from each climate model scenario simulation over those 10 

from the corresponding climate model control simulation with same non-exceedance probability or return period. 11 

This methodology has been applied in several recent climate change studies, e.g. on the basis of statistical 12 

downscaling applying quantile mapping or quantile perturbations (Willems and Vrac, 2011; Gudmundsson et al., 13 

2012; Maraun, 2013; Ntegeka et al., 2014; Rana et al., 2014; Sunyer et al., 2015) and also a similar procedure for 14 

analyzing decadal precipitation anomaly (Willems, 2013; Tabari et al., 2014; Tabari and Willems, 2016). Extreme 15 

precipitation is defined in this study as precipitation with return period (T) higher than 1 year and the return period is 16 

calculated empirically based on the rank of precipitation values (n/i, where n and i are the length of the study period 17 

and rank, respectively; i = 1 for the highest value). 18 

In addition to the quantile analysis, the historical simulations of the climate models are validated based on 19 

precipitation intensity–duration–frequency (IDF) curves which are typically used for design storm calculations and 20 

related designs, e.g., urban drainage systems and hydraulic structures. The IDF curves for 1-month, 1-year and 10-21 

year return periods and for durations from 10-15 minutes up to one month are developed for the control runs of the 22 

climate models as well as the observations. The IDF curves are derived based on Peak Over Threshold (POT) 23 

extreme value statistics after calibration of two-component exponential distributions, following Willems (2000). In 24 

this paper, the precipitation intensities of given return periods are referred to as design precipitation quantiles. 25 

For the climate models, precipitation data are extracted for the model grid cell covering Uccle station in Central 26 

Belgium. This station is selected because it has high quality 10-min observations recorded with same instrument 27 

since 1898 (Demarée, 2003). In addition to the 10-min station observations, daily E-OBS gridded data (v12.0, 28 

Haylock et al., 2008) for 27.8 km and 55.7 km are used. These gridded data are aggregated to larger pixels of 167 29 

km and 334 km to be consistent with the grid mesh size of the driving GCMs and reanalysis data. 30 

4 Validation of precipitation simulations 31 

The capability of the climate models to simulate the present-day precipitation is evaluated before investigating 32 

future precipitation changes. The validation of the daily precipitation quantiles simulated by the ALARO and the 33 

CCLM convection-permitting models and their boundary conditions based on the point and pixel interpolated Uccle 34 
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observations for the summer season (June-July-August: JJA) is shown in Fig. 1. This is done for the historical model 1 

simulation periods 1961-1990 for ALARO and 2001-2010 for CCLM. The results reveal that the ALAROERA40 2 

model overestimates the observed summer extremes. The extreme simulations of the ALAROCNRM-CM3 model with 4 3 

km resolution are in between the point observations and the gridded ones with a grid size of 27.8 km which shows 4 

good accuracy of these simulations. The CNRM-CM3 GCM and ERA40 reanalysis data used as the boundary 5 

conditions of the ALARO model show a systematic underestimation especially for the higher return periods. This 6 

confirms the finding that higher resolution results in more extreme precipitation in climate models (Jacob et al., 7 

2014). 8 

As for the CCLM model (Fig. 1), the simulations of summer extremes for 2.8 km resolution are nearly unbiased 9 

for the events with T > 2 years. The increasing skill of RCMs with increasing model resolution for simulation of the 10 

spatio-temporal characteristics of summer precipitation has also been found by using the high-resolution models, 11 

although limited in application (Rauscher et al., 2010; Kendon et al., 2012). For T < 2 years, the CCLM model tends 12 

to underestimate the summer precipitation extremes particularly for the runs with coarser resolutions. These 13 

underestimations for lower T appear to be explained by underestimations in the EC-EARTH GCM and ERA-Interim 14 

reanalysis rather than in the CCLM model itself. 15 

As the difference between climate model outputs and observations may be partly attributed to the spatial scale 16 

difference, the extreme precipitation (averaged over the extreme events with T > 1 year) simulations of the climate 17 

models versus spatial scale for both summer and winter seasons are shown in Fig. 2. Taking the spatial scale 18 

difference into account and averaging the extreme values with T > 1 year, the ALAROERA40 simulations are closer to 19 

the observations compared with the ALAROCNRM-CM3 model. Decease in systematic biases in the large-scale climate 20 

in reanalysis-driven RCM simulations was also reported by Maraun et al. (2010). They also pointed out that these 21 

RCMs are capable of reproducing the actual day-to-day sequence of weather events. The great ability of the CCLM 22 

model, large underestimations of CNRM-CM3, EC-EARTH and ERA40, and slight overestimation of ERA-Interim 23 

data for summer precipitation extremes are also obvious from these plots. As expected, the percentage bias of the 24 

climate models decreases as the time scales get larger (i.e., weekly and monthly). 25 

The validation of the climate model simulations for the summer season in terms of IDF statistics is shown in Fig. 26 

3 for time scales in the range between 10-15 minutes and 30 days. The IDF curves are plotted with reference to 27 

design precipitation intensities from the station and E-OBS pixel data over the Uccle location (Central Belgium). 28 

Comparing the hourly simulations of the ALAROERA40 model with different resolutions shows the greater intensities 29 

for finer resolutions. In terms of accuracy, most of the ALARO runs underestimate the station observations and 30 

overestimate the gridded observations (extrapolated). Regarding 3- and 6-hourly time scales, the ALARO model 31 

simulates more intense precipitation of 10-year return period in comparison to both the station and gridded 32 

observations. The model underestimates (overestimates) design storms of 1-year return period and 3- and 6-hourly 33 

durations when compared with the station (gridded) observations. For larger time scales, design precipitation is still 34 

overestimated by most of the ALARO runs. 35 

The CCLM model simulates less intense 15-min precipitation of 10-year return period (Fig. 3). However, this 36 

underestimation changes to overestimation for larger sub-daily aggregation levels. For the sub-daily design storms 37 
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of 1-year return period, the CCLM model generally underestimates the station observations, while both over- and 1 

underestimations are seen in comparison with the gridded observations. However, the EC-EARTH GCM extremely 2 

underestimates both the gridded and raingauge observations. This supports the recent findings for underestimation of 3 

heavy hourly precipitation during summer by large scale climate models and more accurate simulations of 4 

convection-permitting models (Chan et al., 2013, 2014; Ban et al., 2014; Fosser et al., 2015). In the case of daily to 5 

monthly durations which are less important for urban drainage and hydraulic structure design, the precipitation 6 

intensities are both overestimated and underestimated by the CCLM model. 7 

For the winter season (December-January-February: DJF), the results show overestimations of the ALARO and 8 

CCLM models (Fig. 2). As winter precipitation over Belgium is mainly controlled by large scale circulation, an 9 

improvement in the simulations of convection-permitting models in comparison to the parent large scale models is 10 

less expected for the winter season. Although improved simulations of winter precipitation by convection-permitting 11 

model have been reported for regions with complex topography (Ikeda et al., 2010; Rasmussen et al., 2011) due to 12 

better resolved orography (Prein et al., 2015), this effect is less relevant for Belgium which is more flat. 13 

Whereas winter daily precipitation extremes are systematically overestimated by the ALARO model, the driving 14 

CNRM-CM3 GCM and ERA40 reanalysis data slightly underestimate the winter extremes (Fig. 2). Deficiency of 15 

very high resolution climate models in simulation of winter precipitation extremes is because the fronts and synoptic 16 

depressions that cause the dynamical processes driving winter precipitation events have scales of 102-103 km. This 17 

deficiency has been demonstrated by Hong and Leetmaa (1999) and Chan et al. (2013). For the CCLM model, when 18 

the CCLMEC-EARTH 2.8 km simulations are compared with those of the CCLMERA-Interim 2.8 km for the winter 19 

extremes, the overestimations of the earlier run is higher than the later one which can be attributed to a large 20 

overestimation of the EC-EARTH GCM results taken as the boundary conditions. 21 

After validation of design precipitation simulations by the convection-permitting models for summer and winter 22 

seasons separately, further analysis was performed in the framework of IDF relationships, considering the extremes 23 

for all seasons as usually done for developing design standards (Fig. 4). Based on this analysis, the ALAROERA-Interim 24 

model underestimates hourly design precipitation derived from the IDF curves based on the station observations. 25 

Although sub-daily gridded precipitation are not available, by imaginary extending the IDF curves for the daily 26 

gridded data still a small underestimation of the ALAROERA-Interim simulated hourly design precipitation can be 27 

noted. In the case of 3- and 6-hourly design precipitation, the ALAROERA-Interim model provides closer results to the 28 

existing IDF curves and probably a slight overestimation in comparison with the gridded data. As for the daily time 29 

scale, the ALAROERA-Interim simulates larger precipitation intensities compared to the ALAROCNRM-CM3 model and 30 

the ERA-Interim reanalysis. For aggregation levels between 5 days and 1 month, the difference between the model 31 

simulations is smaller except for the CNRM-CM3 GCM with a remarkable underestimation. 32 

For the CCLM model, the 2.8 km run tends to underestimate the precipitation intensities at 15 and 30 minutes, 33 

which are typically used for sewer and drainage system design. For instance, for a storm of 10-year return period 34 

and 15-min duration, this underestimation can be up to 63 mm/h. Although this underestimation may be partially 35 

due to spatial scale difference, in practice IDF curves based on station observations (and not gridded observations) 36 

are typically used for the design of hydraulic structures. For sub-daily durations (hourly, 3-hourly and 6-hourly), 37 
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design precipitation intensities are underestimated by almost all the CCLM model runs except for some 2.8 and 7 1 

km runs. In the case of daily to monthly durations, the precipitation intensities simulated by the models are very 2 

close to each other. No improvements in the simulations of daily mean precipitation by the convection-permitting 3 

models compared with large scale climate models were reported by Chan et al. (2013) and Fosser et al. (2015), 4 

while some other researchers found improvements especially over mountainous areas (Prein et al., 2013b; Ban et al., 5 

2014), implying region and model dependency for simulation of daily mean precipitation. Nevertheless, it can be 6 

concluded from the IDF plot (Fig. 4) that design precipitation intensities are overestimated by the driving ERA-7 

Interim reanalysis data and underestimated by the driving EC-EARTH GCM. The underestimation of sub-daily 8 

precipitation by the EC-EARTH GCM is remarkable. 9 

5 Future precipitation changes 10 

To cope with the scale difference and the biases shown in the previous section, state-of-the-art climate change 11 

impact analysis makes use of statistical downscaling. One of the popular downscaling methods is the delta change 12 

method. Different versions exist for that method: from the simple basic method to more advanced methods such as 13 

the quantile perturbation method. In this type of methods, the intrinsic assumption is made that the bias under future 14 

climate conditions is identical to the bias in current climate conditions. This is implemented through the use of 15 

“change factors” applied for historical precipitation quantiles. Another important assumption that is made by these 16 

methods is that the change factors are spatial scale independent, such that the scale difference, although it is an issue 17 

for the absolute precipitation intensity values, is less an issue for the delta change methods at which relative changes 18 

are applied. The latter assumption is tested next. In this context, the relative changes in precipitation quantiles 19 

between the future and historical simulations of climate model runs were calculated to compare the convection-20 

permitting models and their driving GCMs. These change factors were computed for winter and summer seasons as 21 

sub-daily and daily precipitation quantiles from the scenario period divided by those from the control period with the 22 

same return period (change factor equal to one means no change). 23 

The change factors in precipitation extremes for winter and summer seasons computed by the ALAROCNRM-CM3 24 

model are shown in Fig. 5. The ALAROCNRM-CM3 projects an increasing signal in the range of 14% to 74% for 25 

winter, implying a substantial wetter winter. A drier summer is expected from the ALAROCNRM-CM3 model 26 

projections with a decreasing signal down to -23%. When the change factors computed for ALAROCNRM-CM3 are 27 

compared with those obtained from the driving CNRM-CM3 GCM, more or less the same conclusion can be made: 28 

an increasing signal for winter between 17% and 61% and a decreasing signal for summer which goes as low as -29 

18%. Generally, it can be inferred from the results that, at synoptic (daily) scale, the projections by the ALARO 30 

model are consistent with those from the driving GCMs. De Troch et al. (2013) pointed out that an increase in 31 

spatial resolution in the ALARO model is not as important as the parameterization scheme used for extreme 32 

precipitation modeling at daily scale. 33 

Fig. 6 shows change factors for daily and 3-hourly precipitation computed using the CCLMEC-EARTH model with 34 

different spatial resolutions for winter and summer seasons. The change factors for all extreme events with T > 1 35 

year are shown in this figure. To simplify the interpretation of the results, the change factors for extreme 36 
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precipitation averaged over the extreme events with T > 1 year versus the models’ spatial scale are presented in Fig. 1 

7. For the winter season, the change factors for both daily and 3-hourly precipitation decrease as the model’s 2 

resolution increases. Nevertheless, the change factors for all the CCLM runs are higher than those for the driving 3 

EC-EARTH GCM. A larger change is projected for 3-hourly precipitation compared with daily precipitation. For 4 

summer, the change in 3-hourly precipitation obtained from the CCLMEC-EARTH 2.8 km run is greater than that from 5 

the CCLMEC-EARTH 7 and 25 km runs, while the pattern for the daily time scale is similar to that of the winter season: 6 

decreasing change factors with increasing the model’s resolution. Similar to winter, the results show an 7 

amplification of the future climate change signals for 3-hourly extremes in the CCLM 2.8 km model compared with 8 

the driving EC-EARTH GCM (18% average relative changes for the CCLMEC-EARTH 2.8 km run versus 6% change 9 

for the EC-EARTH GCM). This amplification is not evident for the daily scale. Intensification of change in sub-10 

daily precipitation extremes that are not simulated by large scale models was also found by Kendon et al. (2014). 11 

The results also reveal that sub-daily precipitation extremes during summer are expected to change at a higher rate 12 

compared to daily extremes. Generally, it can be inferred that there is an increase in the change factors of sub-daily 13 

precipitation when going from parameterized convection to the convection-permitting scale. 14 

6 Concluding remarks 15 

A comparative study between the convection-permitting climate models with a spatial resolution from 2.8 km up to 16 

40 km and driving GCMs or reanalysis data was performed to check whether the models with higher resolution 17 

provide more accurate precipitation simulations. Another analysis was performed to validate the spatial scale 18 

independency assumption of climate change signals for the delta change downscaling method. The results show that 19 

whereas winter daily precipitation extremes are generally overestimated by the ALARO and CCLM models, 20 

improved (unbiased) results for summer precipitation extremes are observed. This suggests the added value of 21 

convection-permitting climate models to simulate summer extremes because of either better representation of deep 22 

convection or larger detail of the land surface. The results moreover indicate that the difference between the 23 

convection-permitting models and the parent GCMs or reanalysis data decreases as the time scales get larger (i.e., 24 

weekly and monthly). Based on the precipitation statistics derived from IDF curves, the ALARO and CCLM models 25 

mostly underestimate sub-daily precipitation, but still better simulate it compared with parent GCM or reanalysis 26 

data when available. For summer IDFs, higher precipitation intensities are simulated by finer resolution models as a 27 

result of better representation of small-scale convective precipitation by these models. 28 

To investigate whether or not the climate change signals from the convection-permitting models are more or less 29 

the same as those from the large scale driving GCMs, the relative changes were computed for precipitation extremes 30 

during summer and winter. For the ALARO model, it can be concluded that, at synoptic (daily) scale, the change 31 

factors for the ALARO model are comparable with the ones from the driving CNRM-CM3 GCM. In the case of the 32 

CCLM model, the results reveal an intensification of climate change signals for the CCLM model compared with 33 

the driving EC-EARTH GCM, for both 3-hourly and daily time scales for winter and sub-daily scale for summer. In 34 

a similar pattern, the change factors of 3-hourly summer precipitation extremes for the CCLMEC-EARTH 2.8 km run 35 
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are larger than those from the 7 and 25 km runs. Comparing change factors for 3-hourly and daily precipitation, a 1 

larger change is projected for 3-hourly precipitation for both winter and summer seasons. 2 

In summary, because the results of this study indicate that the summer extreme precipitation simulations of the 3 

high-resolution climate models are closer to the observations, their future projections are expected to be more 4 

accurate than those of the driving GCMs. These climate change signals obtained from the high-resolution models 5 

may differ from the ones based on the coarse-resolution models. However, the resulting precipitation change from 6 

these high-resolution climate models should not be interpreted as an exact number because of their limited number. 7 

More runs with high-resolution models are required to check the consistency among models. In the same way as an 8 

ensemble approach on climate models provides uncertainty estimates on the climate change signals, an ensemble of 9 

the high-resolution models provides uncertainty estimates on the difference between the climate change signals of 10 

fine versus coarse scale as a result of improved representation of complex landscape and land surface processes, 11 

which may provide more realistic statistics of precipitation including extremes for regional hydrological modeling. 12 

Also, the statistical significance of the difference in climate change signals at fine versus coarse scale can be tested 13 

in such approach. From the comparison in this study, the results of the CCLMEC-EARTH model indicate an increase in 14 

the change factors in summer when going from parameterized convection to the convection-permitting scale. This is 15 

different for the ALARO model, where the higher resolution models show changes in the same range as the coarse 16 

resolution models. Different procedures for convection parameterization in the CCLM and ALARO models and 17 

different boundary conditions (the first one is nested in the EC-EARTH model from CMIP5 and the later in the 18 

CNRM-CM3 model from CMIP3) might explain the discrepancy between the results of the two models. 19 
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Table 1 The convection-permitting model runs used in this study. 

Climate 

model 

Driving 

GCM/reanalysis 

Spatial scale 

(km) 

Temporal 

scale 

Control 

period 

Scenario 

period 

Data 

coverage 

CCLM 

ERA-Interim 2.8 hourly 2001-2010 - whole year 

ERA-Interim 7 hourly 2001-2010 - whole year 

ERA-Interim 25 hourly 2001-2010 - whole year 

EC-EARTH 2.8 15 min1 2001-2010 2060-2069 whole year 

EC-EARTH 7 hourly 2001-2010 2060-2069 whole year 

EC-EARTH 25 3 hourly 2001-2010 2060-2069 whole year 

ALARO 

ERA-Interim 4 hourly 1981-2010 - whole year 

ERA40 4 daily 1961-1990 - whole year 

CNRM-CM3 4 daily 1961-1990 2071-2100 whole year 

ERA40 4 hourly 1961-1990 - summer 

ERA40 10 hourly 1961-1990 - summer 

ERA40 40 hourly 1961-1990 - summer 

1
 CCLMEC-EARTH 2.8 km data for the scenario period are available for hourly time scale. 
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Figure 1. Validation of the daily precipitation quantiles for the ALARO (left) and CCLM (right) models and their driving GCMs 

or reanalysis data based on point and pixel interpolated Uccle observations, for summer season (historical climate: 1961-1990 for 

ALARO and 2001-2010 for CCLM). 
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Figure 2. Validation of the extreme precipitation (averaged over the extreme events with T > 1 year) simulations for the 

ALARO, CCLM and the driving GCMs or reanalysis data based on point and pixel interpolated Uccle observations for summer 

(left) and winter (right) seasons, versus the models’ spatial scale. 
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Figure 3. Comparison of historical IDF-relationships based on point and pixel interpolated Uccle observations, with the CCLM, 

ALARO and the driving GCM or reanalysis results for summer season. 
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Figure 4. Comparison of historical IDF-relationships based on point and pixel interpolated Uccle observations, with the CCLM, 

ALARO and driving GCM or reanalysis results. 
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Figure 5. Change factors for daily precipitation quantiles computed using the ALAROCNRM-CM3 4 km and the driving CNRM-

CM3 (A1B) for summer (left) and winter (right) seasons. 
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Figure 6. Change factors for daily and 3-hourly precipitation quantiles computed using the CCLMEC-EARTH 2.8, 7, 25 km for 

summer (left) and winter (right) seasons. 
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Figure 7. Change factors for extreme daily and 3-hourly precipitation (averaged over the extreme events with T > 1 year) 

computed using the CCLMEC-EARTH 2.8, 7, 25 km and the driving EC-EARTH GCM for summer (left) and winter (right) seasons, 

versus the models’ spatial scale (vertical bars show the 95% confidence intervals calculated using t test). 
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